Knowledge Management
Semi-supervised Knowledge Transfer Across Multi-omic Single-cell Data Fan Zhang
Knowledge transfer between multi-omic single-cell data aims to effectively transfer cell types from scRNA-seq data to unannotated scATAC-seq data. Several approaches aim to reduce the heterogeneity of multi-omic data while maintaining the discriminability of cell types with extensive annotated data. However, in reality, the cost of collecting both a large amount of labeled scRNA-seq data and scATAC-seq data is expensive. Therefore, this paper explores a practical yet underexplored problem of knowledge transfer across multi-omic single-cell data under cell type scarcity. To address this problem, we propose a semi-supervised knowledge transfer framework named Dual label scArcity elimiNation with Cross-omic multi-samplE Mixup (DANCE). To overcome the label scarcity in scRNA-seq data, we generate pseudo-labels based on optimal transport and merge them into the labeled scRNAseq data.
On Giant's Shoulders: Effortless Weakto Strong by Dynamic Logits Fusion
Efficient fine-tuning of large language models for task-specific applications is imperative, yet the vast number of parameters in these models makes their training increasingly challenging. Despite numerous proposals for effective methods, a substantial memory overhead remains for gradient computations during updates. Can we fine-tune a series of task-specific small models and transfer their knowledge directly to a much larger model without additional training? In this paper, we explore weak-to-strong specialization using logit arithmetic, facilitating a direct answer to this question. Existing weak-to-strong methods often employ a static knowledge transfer ratio and a single small model for transferring complex knowledge, which leads to suboptimal performance.
Disentangling and mitigating the impact of task similarity for continual learning
Continual learning of partially similar tasks poses a challenge for artificial neural networks, as task similarity presents both an opportunity for knowledge transfer and a risk of interference and catastrophic forgetting. However, it remains unclear how task similarity in input features and readout patterns influences knowledge transfer and forgetting, as well as how they interact with common algorithms for continual learning. Here, we develop a linear teacher-student model with latent structure and show analytically that high input feature similarity coupled with low readout similarity is catastrophic for both knowledge transfer and retention. Conversely, the opposite scenario is relatively benign. Our analysis further reveals that taskdependent activity gating improves knowledge retention at the expense of transfer, while task-dependent plasticity gating does not affect either retention or transfer performance at the over-parameterized limit. In contrast, weight regularization based on the Fisher information metric significantly improves retention, regardless of task similarity, without compromising transfer performance. Nevertheless, its diagonal approximation and regularization in the Euclidean space are much less robust against task similarity. We demonstrate consistent results in a permuted MNIST task with latent variables. Overall, this work provides insights into when continual learning is difficult and how to mitigate it.
Supplementary Material: Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses
M-SYNTH and code for processing can be found in https://github.com/DIDSR/ Please following the instructions on Github to dowload files from Huggingface. M-SYNTH is organized into a directory structure that indicates the parameters. Each folder contains mammogram data that can be read from.raw Note that only examples with odd PHANTOM_FILEID contain lesions, others do not.
On Giant's Shoulders: Effortless Weakto Strong by Dynamic Logits Fusion
Efficient fine-tuning of large language models for task-specific applications is imperative, yet the vast number of parameters in these models makes their training increasingly challenging. Despite numerous proposals for effective methods, a substantial memory overhead remains for gradient computations during updates. Can we fine-tune a series of task-specific small models and transfer their knowledge directly to a much larger model without additional training? In this paper, we explore weak-to-strong specialization using logit arithmetic, facilitating a direct answer to this question. Existing weak-to-strong methods often employ a static knowledge transfer ratio and a single small model for transferring complex knowledge, which leads to suboptimal performance.
BoxE: A Box Embedding Model for Knowledge Base Completion
Knowledge base completion (KBC) aims to automatically infer missing facts by exploiting information already present in a knowledge base (KB). A promising approach for KBC is to embed knowledge into latent spaces and make predictions from learned embeddings. However, existing embedding models are subject to at least one of the following limitations: (1) theoretical inexpressivity, (2) lack of support for prominent inference patterns (e.g., hierarchies), (3) lack of support for KBC over higher-arity relations, and (4) lack of support for incorporating logical rules. Here, we propose a spatio-translational embedding model, called BoxE, that simultaneously addresses all these limitations. BoxE embeds entities as points, and relations as a set of hyper-rectangles (or boxes), which spatially characterize basic logical properties. This seemingly simple abstraction yields a fully expressive model offering a natural encoding for many desired logical properties. BoxE can both capture and inject rules from rich classes of rule languages, going well beyond individual inference patterns. By design, BoxE naturally applies to higher-arity KBs. We conduct a detailed experimental analysis, and show that BoxE achieves state-of-the-art performance, both on benchmark knowledge graphs and on more general KBs, and we empirically show the power of integrating logical rules.
Cross-Device Collaborative Test-Time Adaptation Guohao Chen 1 2 Deyu Chen
In this paper, we propose test-time Collaborative Lifelong Adaptation (CoLA), which is a general paradigm that can be incorporated with existing advanced TTA methods to boost the adaptation performance and efficiency in a multi-device collaborative manner. Specifically, we maintain and store a set of device-shared domain knowledge vectors, which accumulates the knowledge learned from all devices during their lifelong adaptation process. Based on this, CoLA conducts two collaboration strategies for devices with different computational resources and latency demands.